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Radistion Patterns of a Slotted-Cylinder Antenna

in the Presence of an Inhomogeneous, Lossy Plasza
2 By Calvin T. Swift, NASA, langley Station, Heampton, Va.
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| A method is presented for calculsting the cou~forial patterns

/5555

2r ~ 8lot ankenms on s econdueting cylinder coated with & plasma which is

irhomogeneous in a direction radially outward from the cylinder. The pro-
codure consists of separating the wave squation into real and immginary

| perts, and mmerically integreting between sppropriste boundary conditions.

| The solutions are cosfficiants of tha Fourier Series which express the

nsture of the far fisld psttern. HResults are presented which demonstrate

the desirsbility of this approsch to predict sigmal attenuation of antennas
in a plassa exvirooment.

IRTRODUCTION

| When & hypersonic vebicls re-enmters the stmosphere, a hot gas regiom is
formed between the body and the shock wave, thereby gensrating free electrons
to intermat with electromagnetic redistion emitted from on-board antenmas.

If the ionization is sufficlently strong, a radio blackout condition m oecur,

resulting in the disruption of cammmications over a large portion of the
trajectory.
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The electron density amd collision fyequency of the plasmm, determined
by appropriate flow fleld analysis, are two important guantities needed to
spacify the camplex index of refraction, hence the nature of the interaction.
In general, at any given trajectory point, the electron concentration is
highly distributicnsl, particularly in the divection normal to the vehiole.
AB & consequeance, the mtion equations must become modified to include
gradients of the index of refxaction.

The geametry is another important peremeter. Comsiderable attention has

A 1,2
besn concentyated on two models, vis. the slot on the flat ground plane »2,3

and th‘lot on the aylinder. The fornﬁ-ﬁmnutm to re-entry problems
provided the curvatwre of the body is neglectsd. This theory has been
dsveloped to incinde losses, finite plasma dimensions, anisotropic effects
and finits sperture sise; however, inhomogeneous plasmas are excluded, If
the wavelength 1s corpmrable to the vehicle size, the curvature of the
structure and surrounding plasms must be considered. To simplify this prob-
lom, a cylinder is selscted as & mathematical model; a ressonable cholce
since this shape represents the aft portions of many re-entry vehicles.

Two source confipjmrations ars relevant to this geomstry, viz. the finite

aperture and the infinitely long slot. The finite alot is a more appropriate

1 i

H. Hodara, "Redistion fram a Qyro-Plasma Sheathed Aperture”, IRE Trans.
on Antennas and Propagation, vol. AP-11, pp. 2-12; Jamuary, 1963.

2

T. Tamir and A. A. Olimer, "The Influence of Complex Waves on the Radiation
Field of a Slot-Excited Plasma layer"”, IRE Trans. on Antennas and
Propagation, vol. AP-10, pp. 55-65; January, 1962.

3

Masayuki Omurs, "Radiation Pattern of a Slit in a Ground Plane Covered by
a Plasma Iayer”, Air Force Carbridge Research Laboratories, Hanscom Field,
Mass,, Rept. No. AFCRL-62-958; December, 1962.
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represantation of the physical picture, however, the mathematice is
complete

quite complicated, restricting pattern ealculations to those cases where
the plasma is hamogenecus and non-lauy.h'ﬁ’s
finitely long, the gecmetry reduces to two dimensicnghs, involving only
the redial an? artmihal coordinztes. The problem of the homogsnsous

1f the antenna is in-

lossy plasma has been solved in a recent report vhere collisions are in-

cluded through the use of thin coating, and high and low fregquency approxi-

mm.7 Ths sfuations partimmt to the two-dimensional model can be ex-

tended to define interwetions with inhcmogeneous plasmas. However, the
practicsl solutions of these squstions, jn general, are not spscifible
hmmmmiummmitmmuwm ghock layer.
Therefore, amlytical aolﬁuanss or WKB approximations are not realistie
for many problems of interegtuﬂmmtbea.b&ndmd in fwvor of exact

mmerical technigues.

L

Charles M. Bnop, "the Radistion Fislds from & Circusferential Slot om &
Motal Cylinder Coated with a Lossy Dielsctric”, IHE Trans. on Antemas

5 and Propagation, vol. AP-9, pp. 535-545; November, 1961.

W. V. T. Rusch, "Badiation from a Plasme-Clad Axially-S8lotted Cylinder”,
Electrical Engineering Department, Univ. of Southern California, Ios
6 mhs’ mifo, mo 30. W-sa-'m;' W, 1%20
J. H. Harris, "Radistion Through Cylindrical Plasma Sheaths", Report pre-
pared for Air Force Cambridge Research laborstories, Bedford, Mass.,
. Rept. Mo. AFCRL~62-976; August, 1962.

Dipak L. Sengupts, "The Radiation Field Produced by an Infinite Cylinder
Surrounded by s Homogeneous Plasma Sheath”, Radar laboratory, The Univer-
sity of Michigan, Amn Arbor, Mich., Rept. . 4863-35-T; May, 1963.

Cavour W. He Yeh and Z, A. Kaprielian, "Radiation firom an Axially Slottad
Cylinder Coated with an Ivhomogemsous Dielectric Sheath”, Eleectrical
Engineering Department, Univ. of Southern Califcrnia, Ioa An@les, Calif.,
m HO- m&-m’(, mcm, 1%20 n “;’;‘ﬂ. Lo
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One mmerical approach considers the plasma as a mulii-layered series
of lossy homogensous slz.bs.g This technigue has been derived for con-
venient application to plane waves at normal incidence to & plasma slab;
however; this procedure may be inadequate to describe the present problem.
The boundary conditions must be applied a large mmber of times and cal-
culation of Bessel function of complex arguments is required at each boundary.
Since this approach sesms to introducs camputatiomal difficulties, the
alternative acheme of directly integreting the wave equation vas chouu.m’u

The mechanics of the scheme 1s as follows: First, all the fislds are
properly normalised so that the boundary eonditions at the air-plasma inter-
face are expressible in terms of the known quantities (Pessel functioms,
index of refraction, wave mmber, and the readial distance to the boundary).
Second, all quantities are separated into real and imaginary parts. A4s &
result, M%M conditions at the ailr-plasma interface are doubled,
and the vave equation expands into a palr of simultaneocus second-order

differential squations.

9

T. P. Harley and . Tyres, "Transmission of Electromagnetic Waves Through
an Ionized layer in the Presence of a Strong Magnetic Field"”, Proe. IRE,
vol. 49, pp. 1822-182L; December, 1961.

10
J+ BE. Richmond, "Transmission Through Inhomogeneous Plane layers", IRE Trans.
on Antennas and Propagation, vol. AP-10, pp. 300-305; May, 1962.

1

Calvin T. Swift and John S. Evans, "Generalized Treatment of Plane Elec-
tromagnetic Waves Passing Through an Iscotropic Inhomogeneous Plasma
Slab at Arbitrary Angles of Incidence”, Natiomal Aeronmautics and Space
Administretion, Washington, D. C., Rept. No. NASA TR-R172; April, 1963.
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Finally, the solutions of the wave equation and the exﬁctation voltage
at the conductor-plasma interface specify the unknown coefficients, hence
the far field pattern.

The primery topic of this paper is the &ingle axial slot; however,
an appendix is included which describes the necéssary procedures neaded
to calculate anteanna patterms of circumferential slota.

Fomanc lature

s radius of condueting cylinder

af, width of slot

b radial extent of plasma slot

E electric field intensity

sz radial dependent part of electric fisld intensity
Gins redial dependent part of magnetic fisld intensity
B nagnetic field intenasity

2 2)(x) Hamim1 nmetion of order n end argumnt x
Ja(x) Bessel function of order m and argument x

ko free space wave mumber
™ electron density, cm™
n index of refraction
P(¢) pattern factor

¥,z cylindrical coordinates
u, wit vector in 2z direction
Yo applied potential on slot

V(r)al" pe f 3
/ 3/
(5) +(Z)

!{



wr) =
T Ga

!n(x)azfxmmhmtionotordermandargtmntx

o attemaation coefficient

€, yonsittivity of free space

& permittivity

By permeability of free space

2/ electron collision frequency

g* dumy variable representing azimuthel coordinate of the
slot integration

w propagating frequency, redians per sec.

b)p plasmfrthmy-EnXS.waa;i'

"= df/dr

Subscripts:

spec. specified value

r,0,z vector camponents in the three principle directions
Superseripts:
I plasma region

II free space region
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Analysis of the Axial Slot

The model shown in figure 1 consists of an infinitely long conducting
cylioder into which 1s cut a long radisting slot of finite width. The slot
1s excited by a tangentially applied elstric field, uniformly distriduted
in the axial direction, but specified across thes slot. An exponential
factor e 1s chosen to describe the time dependence of the fields. The
camplex index of refraction of the plasma surrounding the cylinder is
assumed o vary only in the redial direction.

The vector wave equation vhich deseribes the propagation of the magnetic
vector in the presence of inhomogenecus media is of the fomm:

VIR o+ kZurH == Y F (1)

hl
vhere the complex index of refraction, n, 1s a function of position.
In genaral, equation (1) expands into three rather complicated differemtial
equations, However, the restrictioms imposed by the model generate certain
simplifications.

First, the problem is two dimensional, thereby requiring the derivatives
of the fields with respect to the ; coordinste to vanish. It also follows
that

Er=Ho=Hy=0 (2)

Since the index of refraction varies only in the radial direction

h:—w(b) (3)



and equation (1) reduces to:

/uaA

£
Jd H ((‘&)] L Q2 Halnd) ) dw2
2 # L. gLl 0 h(r)QH . T o
[ /U-c)?'g " S %d) l?‘ lr)H;(Cd)jO(h)
Atrsp

I
Representing Ha (;#) by the complex Yourier Series:

m=ot
I ‘Yan
Hacr, ¢) = Z, Gz tr) €™ ? (5)
m T -0l .

transforms equation (L) into the total differential equation:

Rl g ] L ko

afr<p
In order to properly satisfy the boundary conditions at r = b it is

necessary to know the functional behavior of the wave in free space. Since

the index of refraction is constant in free space the solution is:

HZ (r,$) = Z /’/ma(‘r¢) Z__ Cn, /v/w (k. v) eiJWd

™ - me— (1)
rzb
Where the coefficients Cm are to be dstermined.
The ¢ components of the electric vactor are also of interest, From
the relationship

s / 3 H
X

the respective Eg components in the plasma and in free space are given by
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Yne o0
I / / -J.W‘¢
EF‘ = 7 J'wé(r) Z- 6’“?: (r) <

= -0 (9)
mz e y "ﬁ

-F_ - - Com n[v;. £ €_‘)M

ti - J‘wé'o g.';. Y (er (10)

Since the tangential camponents of the electric and magnetic fields
mst be continuous at r = b the following boundary conditions must be

satisfied

z T
Hé (bl ¢) = H? (é)¢)

(11a)
Ey(b,4) = Eq (hg)
And, on the surface of the cylinder, r = a, the boundary condition 1s
given by

Eg (a,8) = Egspoe. (a,8) (1)
Eﬁapec.(“’m is the specified electric field which can be expressed in terms
of the Fourier expansionlz:
_ = o T
Z:qﬁsPec.. (e, cf) :;7’7__23 ‘J'”‘S‘ﬁ/é_:’d (6, 4*) gj‘y’»ﬁ{ *j;ﬁ" (12)
L ~V

By direct substitution the boundary conditions (equations (1la) and

(11v)) >ecame:
e Hviz‘)/le,,k): Guws (b)
Co M (b, 1) = & Gus () ()
-t Qm/ () = L ’;‘ (4, 4 * eJ'MW‘//*" (120)
Jwera) ® 217 /)y ¥ 49 %
=

J. R. Wait, "Electromagnetic Radiation fram Cylindrical Structures”,
Pergamon Press, Jewv York, N. Y., 1959
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vhich, for convenlence, are normalized so that

2)
Az le_ P b4) (}
C
, 02/
Gmz () = 2 1) ()
C ;
v
g (4) Jwea) g™ (Lib)
e (8 o = V| Eypa gt g%
Conn -
By means of the definition,
Grm:z ) )y ) (15)
Lot

the real and imaginary parts of equations (14) can be separated to establish
values of tm, um, and their derivetives at r = b. This operation re-

sults in the re-expression of the dboundary conditions in the form:

‘i‘m(b) = J—w. (ks b)

(16)
Uw lb) = — Y\M{k"gk)
(a7)
£ (8= V) [« ko Tonsy Chob) + 8 Ty (bob) ] 8
—wieh) Lk, Yo, (bob) — % Yo (/%B)J

b 8) = W) [~ ko T, (ko) + 2 T, (hak)] 19)

1

+ V(b\lll?o Y\M+1 (bob) - @b_ YM (b,,g)]

Where €(r) _ (20)

= = V() 1 | wir)

2]
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Since the medium ies a plasma, the expressions for V(r) and w(r)

bacona:

/
V)= /- w0z wr 12 (22)
[ wptr)] * Wolr)
W) = T ! (22)
£

w [ & ]2-1‘— [ade ]L
Lp(r) Lp(r) Lpte) |
Because the index, m, assumes integer values, aymmetry occurs in the
boundary conditions such that
£onlb)= (<1)" £ 011
lonthy = (=)™ g lh)
Eanthy=(=1)" 2. (b) ©)
W Y TEIY T L, (h)
other than a continuity requirement on the functions and their first
derivatives, V(r) and W(r) may vary arbitrarily. Consequently, numerical
integration of the wave equation is required. In order to properly initiate
the integration, equation (6) is expressed in terms of t, aod w, through
definitions (15) and (20). The left-hand side of equation (6) then separates
into real and imaginary parts, each of which must independently vanish,
and the result is the set of simltansous differential equations



w
-+ —— —
A

¥
-

-]-2‘

Av Ha _ dw .,

‘;éz_(ﬂ' ﬁ%)’\;-’%rﬂ(ﬂﬁ A An

_ow dw A AV A, |
V"'-f-w“"( An ;;}..- 4/&, J/l:__ +k0 [(V-Q?T)“ fm"Wumgto

A Jl AV ..

sh ()l (B

A A, _ AW /am> 2 b2 [(v= B Y W] 20

V'I..+ w‘l—
(ah)

Only positive values of m need be considered because of the recurrence

relationship, equation (23).
The solutioms at r = a and the boundary condition at r = a determine

the unknown coefficients c such that

&(a)
Jw f5¢(a,¢*)e 5/¢*?JC o) = b () g (25)

[t} m)] + [Mw (a)]
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By substituting equation (25) into equation (7), and asymtotically
expanding the Hankel function, the far-field value of n,n(r,ﬁ)
becomsn !

. _J(k’ok‘ ‘;) =R é‘; (dB-J'u..:(a)
£y ( ~ wc— (o.) ’ : *
2@ S b« Z [400a)]*+ [um )]

_)Méf M>/ A’ (&J %) eJ 9([/¢&’—
(26)

: wéo va ...._..7'
ion (26) is normalied divi b
The absolute valus of equat (26) by dingygn_mko hor

and results in the following expression for the far-field patterns

2] é(a) " = fh’m) -.J,kv\:/&_) ._Jm(ﬂ-ll')
IP/Q')} (o)\ \ Z& [f,:(éuz+[0v;:fd)] JE¢/Q;¢)9 4¢‘y

M= - 17’

(27}

Thus, the anterma pattern of an infinite slot antemma (or array of Simaibe
slots) of finite width in the ¢ direction is determined by solving m
sets of the differential equation (24) and summing appropriately to achieve
the desired convergence of equation (27). Purthermore, the equatoria®
pattern of finite length slots are also detemmired by using this method

along with tre prover normalization lachon:

Sl e
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Results

Mmerical imtegration of the propagation equations was performed on
an I 7090 electronic data processing system by the Runge-Kutta method
with an acowracy of 10! per imtegrwtion. The radistor was sssumed to be
a line source with Eﬁr“': 5‘/? S(#*), thus the Fourier integral in
equation ("27) 1s equal to V,/a. Pz(d) wvas computed at 100 increments in
the range 0= ¢ 90° anl 5° inerements for 90% §=180°. Free epace
patterns were calculated by requiring all input values of the electron
density to vanish.

A free space pattern was mammlly caputed and the agreement between
these caleulations and the computer results was excellent. The results

of hand calculations were also eagpared with the mumerical results for a
case vhere region I was a homogeneous, non-lossy plasma. Again, the com-
putational comparisons were good. As a final test, the program was checked
against the amlytical results of a 1/r electrom density distribution
given in figures 4 and 9 of reference 8. Although the magnitudes could not
be campared, the shapes of the numerically determined patterns were identical
with those of reference 8.

(a) The homogeneous plasma.- The homogeneous plasme was avalyzed in
arder to datomme genarel pattern bshavior as a function of the various

paraneters; i.e,, plasma frequency, collision freqQuency, plasms thickness,
and cylinder size. ¥Four overdsnes plasma frequancies in the range
0.01 fb)/c.b < 0.3, and two collision frequencies 7//&) = 0.3 and

/W= 0,02 were selected as representstive values encowrtered under flight
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conditions., The two plasma depths correspond to b/a = 1.2 and

b/e = 1.6. Thim plasmas were chosen 80 that the sttemmtlon would not

b; severe enough to cause the computing machine to overflow. The dimensious
of the two structures are smmall compared to a wavelength and the
froe-space patterns (koa = 0.52) and ka= 1.43) are given in figure 2.

Patterns corresponding to extreme values of the plasma freguency are
plotted in figure 3, and normalized 80 thai the signal strength at $=0
i8 O db. The moet striking observation is tiw relatively small amount of
pattern shift st constant plasma thickness, particularly with regard to the
smaller structure, Another interesting feature is the incressed forward
directionality as the plasme thickness is increased.

These cbservations are consistent with the results of Appendix B. That
is, if the summation indicated by equation (27) converges repidly, and if the
magnitude of V 4is large, the approximmte pattern can be specified by com-
puting the free space patiern of & line source located on & metallic cylinder
of radius b and multiplying by 2 o-{P-3)  ne exact psttern attenuation
at g =0 1s swamrised in Table I, and the valuss of the approximats
degradation factors are listed in Teble II.

Computer results for the critical region W/, = 1 are plotted in
figure 4, These patterns are much mare dependent upon geometry and collision
frequency than those for the overdense plasma, and it 4s Aifficult to discuss
the general pattern trends, other than that the behaviar becomes more
anomalous as the collision frequency increases. It is of particular inter-
o5t to note that a significant amount of rediation can be directed toward

the rear of the antenna.
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b. The inhomogeneous plasma.-~ A2 & means to test the error introduced
by & WKB approximation (Appendix B), a linear variation of electron

density at constant collision frequency was chosen to keep the manual
cagutations sixple. In each of the four cases cansidered, the elsctromn
density at r = a a.rﬂfba(.&bb were assumed to be constant.

The three psttumsagrow together in figure 5 are those for the
hamogensecus and two inhomogeneous plasmas of positive and negative gradients.
The fourth pattern corresponds to an inhaogensous plasma with a largs,
posiiive gradient. The pattern strengths caqputed by the approximate method
of Appendix B are noted in figure 5.

It is izmediately seen that the WKB method falls when reasonable
gredients are introduced, thus strengthening the need of exact mmerical
techniques.

A more practical distribution of electron density and collision fre-
quency is given in figure 6. The M cwrve which contimally increaces
fram the shock to the body corresponds to a completely inviscid shock layer.
The Ne curve which has a maximum between the shock and the body is a
flow profile which includes a viscous boundary layer.

The patterns are plotted in figures 7 and 8§ for the two flow-field
assunptions, and for uos = 0.13 and kg = 0.52. It 18 of interest to
note that the plane wave transmission coefficients are -18.1 db and -3L.8 d

3

for the viscous and inviscid profiles, respectively.l

13
Swift and Evans, op.cit., pp. 29-32
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Conclusions

The following conclusions were noted:

1. Extrems pattern irreguiarities occur in the critical region
G—y;a; 1) of a hamogenecus plasma. The patterns appear to be sensitive
to changes in geometry and collision frequency, and it is possible for
much of the radiated energy to be dilrected behind the antenna.

2. If the homogeneous plesma is overdense, and if the radius of
curvature of the structure is small campared to a wavelength, the
patterns can be approximated by computing the free-spac.e pattern of a
source located on the surface of & metallic cylinder of radius b, and
multiplying this pattern by 2 o-a(b-a) '

3« For values of a?—p <1, irmproved signal transmission occurs with
increasing collision frequency.

4. The pattern is atteruated with decreasing values of w%) and in-
creasing thicknesses of the homogeneous plasma.

5. The approximate methods of coxmputing patterns in the presence of
an inhomcgeneous plasma fall as the plasma pgradients increase,

6. The amount of energy tranamitted through the inhomogeneous plasma

may be much greater than that predicted by plune-vave theory.



AFFENDIX A
THE CIRCUMFERENTIAL SIOT

The geametry of this problem is shown in figure 1, however, the
excitation of the siot is changsd so that
Enz= Ey=Hs -0 (A1)
In this case, the entire interaction is uniquely described by the field

component , Ez. The wave equation which describes the propagation of the

electric vector is expressible in the form

- - -
VE + kn* F =— T V“i ) (A2)

-’ —
But, £ =£2‘(Y)¢) :}

= V)(k) (A3)
Therefore, equation (A2) reduces to
_T - I
[ 2 (/L Dbz(qu) LY S /')CU é‘ »~J
L A — + = nqe) by v of) -

Ci.skfb
Contrary to equation (&), equation (Ah) does not depend upon the gradient of

the complex index of refraction.
The free- space solutions of E and H¢ are:

& TR my - i“ HoZ tbry o7

mz= -0

M=o

/‘/yf(r¢)“""" ZDMH 2)/(,r~)€ sd (46)

L
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And in the inhamogeneous medium the solutions became:

n=ot> ) .
E;rc;{): Z Fa s (V) o~ "
e oo (A7)

Moo ™
l*/,afr(;',;z):—- a / =) e e ¢

J'W/d (AB)

»

At the surface of the cylinder, r = a, the field can be re-expressed in
t be form

WT oo ,w# vy /2 ' <
E;"Spc. Mzé) =5,/7-2: <™ f/:—,; /d_,¢*)e’w¢;/¢# (89)
I -~

The teangsntial camponsnts of the fields must be comtinuous at the alr-plasma
interface, and the electric field must be a specified value at r = a. There-

fore, the boundary conditions can be stated in terms of the following
equations:

Bl N (4

D, (A10a)
72} 4

R_é(o-.- Now  (bib)

v

(A10v)

F:ﬁ}(&) ! L _ y Jwg* « (A10¢)
= o fﬁ/:_;/é;d)@ 7

It is desireble to separate the real and imaginary parts of all the

quantities involved. To accomplish this, let

Frs r) = ZM(\P) +J’ Sw(h) (A1)
D

40
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As e result of equation (All), the expression (AL) expands into the set
of simultaneous differential equations:

fi,ﬁ’z..(’l i—%)+ k[ (v- ('Z—:jz>?m“W5wJ : 9

/ }i (~ %m) +éf[(V—(¢%m> s +W3,]:9 (12)

bl

As in the case of the axial slot, equations (Al2) are integrated subject to
the boundary conditions

T (A= T (ko })
Sm (b)) = — You (0b)

(a13)
aw'(b) = - Bo Tons) (kb)) + "2 T, (foh)
Sw'(b) = Ko Yoy, (ki) =7 Yo (kub)
at r=0>»,
The solutions at r=ea, and the boundary condition at r =&
(equation AlOc) are sufficient to specify the pattern. Through the appro-

priate algebralc manipulation, the far field value of the electric field is

! T o , ,
EIA“ a _E___ e_J(boV"%:) Z [ZW/")‘J fm_/a)J C—Jw[d—g)
3 = )Tr ” oV o [ Zm (a)]1+£5m/ﬁ)_)z Y (Alll-)

-
[r £, la,g*%) ezws{‘;'/%*



APPENDIX B
THE WKB AFPPROXIMATION

The equation which describes the propegation of electromagnetic wave
thronghtho redially verying inhomogeneous p]asmam shown to be

//L /4»';) i i/w‘ a;d:z ) [h’

Through the substitution

Eor)? ~ ) Gz 7O @)

r=e*
Equation (Bl) reduces to

dlém } ﬂ,h?' 1_ ._/
;(;1 ?_;;.J; }/;gm}‘/’éa € [V\— xjéwi'() (82)
And, defining

(B3)

1>< W»?— -2
g2z bre™ |- Th e
The WKB approximation results in a solution of the fowmlh

g 2 g7 [0 A1 o, 1 ]

]

',/:./ ,}? /‘n'/ " il
s vﬁ—w_“‘] JRe [ V- g da
b,a/a— (kaY)l [C/ e i

ve, emibe LV B ]

()5 (F5) -2 7 F 152 (%) /8“')

1f the redius of the cylindrical structure ls small campared to a wavelength,

and if the plasma is overdense, the Fourier series (equation (27)) which

determines the pattern converges repidly. It is therefore reasonable to
assuna that
m"l_

|v]>> U:o'—')" (35)

1h
K. 0. Budden, "Radio Waves in the Tonosphere”, Carbridge Univ. Press,
Rew York, N. Y., Dp. 142-143; 1961.
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for the predominating modes. FEguation (BL) therefare reduces to

) & 23
k’o HdA 'EG
Goz & % ]¢, &’ L + ¢, & Z‘MAJ (B6)
L anxl, the darivative becomes N
wa b wdn
G _J/zon [c & —C’zéJof"““ J (37)

vhere the gradients of the index of refraction have been ignored.
Application of the appropriate boundary conditions to equations (B6)
and (B7) results in the following expression for the coefficiemt, cm in

equation (7) for a line sowrce:

=_ '"Vo /
Cn="0F 37 Vn@nch) “’6"[ ) }(BB)

bob) sine b fmu + ““’*N“”u e

0

or
é ’L“.-J' \./f_ L 91‘9 Wwé, J ' V\{b) =)
m = o 2N h(b) Jvfhz)/{b b) djj(bufhﬂéﬁ) J /
and, the far-field pattern becomes
ZF gmam(# )

Votd) =

(a
mqgr> Z/ (2)/“?0&) - (mo)

If the plasma thickness is sufficiently large, equation (B1O) becomes

b
- v(a) _Jud %
Pz.(d)“.—‘-lw Wb)‘ e “ P (z1)

where Pé*"(¢) is the free-space pattern of a source on a perfectly con-

ducting cylinder of radius b,



- B3 -

If the plasma is hamogeneous,

~d(b-
R = 4 ¢ «) A

x/¢)

(m2)
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TABLE II. EXPONENTIAL ATTENUATION FACTORS AS A FUNCTION OF FLASMA

VREQUERCY, COLLISION FREQUENCY, BDODY SIZE, AND PLASMA

THICKKESE .
 (a) b/a = 1.2
z00 ymir = :
PRy R
~ H(Z)/ =
m=z=-o00 m (kob) e Hm(ﬂ)/(koa)
2 ’-a(b-a), db.
i H i
° U z Y P
% ® 003 ko &=0.52 ; = 0002 ko M.§2 ; = 003 ko ul.h} & = 0.02 ko a"l»h}
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00} "23-09’# ‘2”-01‘1" '7’*00&7 '76.65)1'
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TABLE I. COMPUTER RESULDS AT ¢==0° A3 A FUNCTION OF PLASMA FREQUEXCY,
COLLISION FREQUERCY, BODY SIZE, AND PLASMA THICKNESS.

(2) v/a = 1.2

S;gzmstrquhhat¢=o°

Y% ¥

y 7
@ L = 003 kOM-sa 6-1) = 0002 koa - 0-% ;)" 005 !10‘ = 10h3 ;}—' 0102 ko& = 0-’4-3
0.3 +0.7hT +0.707 S, IS %5 ] { -1.775
1 -2.547 -2.822 - -16.499 -17.389
.04 -21.712 -22.680 72,753 L -T5.395
oY  -79.931 -82,785 P ems | -
{ i
(b) b/a = 1.6

Signal Strength at @ = 0°

tsona-o 1-’~ooeka=052 %’ﬁw.i kam13 Y a0.00 kasll3
e o w °
0.3{ -0,827 -1.202 -1k .8h4% i -15.935
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